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Abstract.

Background: The ideal participants for Alzheimer’s disease (AD) clinical trials would show cognitive decline in the absence
of treatment (i.e., placebo arm) and also would be responsive to the therapeutic intervention being studied (i.e., drug arm).
One strategy to boost the power of trials is to enroll individuals who are more likely to progress targeted using data-driven
predictive models.

Objective: To investigate if machine learning (ML) models can effectively predict clinical disease progression (cognitive
decline) in mild-to-moderate AD patients during the timeframe of a phase III clinical trial.

Methods: Data from 202 participants with a diagnosis of AD at baseline from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) was used to train ML classifiers that can differentiate between individuals who had declining cognitive function (DC)
and individuals with stable cognitive function (SC). DC was defined as any downward change in the Alzheimer’s Disease
Assessment Scale cognitive subscale (ADAS-cog) score over 12 months of follow-up. SC was defined by the absence of
decline in ADAS-cog. Trained models were applied to data from 77 participants from the placebo arm of the phase III trial
of Semagacestat (LFAN study) to identify subgroups of SC versus DC.

Results: Only 74.8% of ADNI participants and 63.6% of LFAN participants had cognitive decline after one year of follow up.
K-nearest neighbors (kNN) classifier had an accuracy of 68.3%, sensitivity of 80.1%, and specificity of 33.3% for identifying
decliners in ADNI (training sample). In LFAN (validation sample), the model showed an overall accuracy of 61.3%, sensitivity
of 65.5%, and specificity of 47.0% in identifying decliners at the 12 months of follow-up. The model had a positive predictive
value of 80.8%, which was 17.2% more than the base prevalence of decliners.

Conclusions: Machine learning predictive models can be effectively used to boost the power of clinical trials by reducing
the sample size.
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Alzheimer’s disease (AD) is the most common
cause of dementia accounting for 60—80% of the cases
[1]. ADis age related and with the aging of the world’s
population it is becoming markedly more common
[2]. Considering the increasing costs and burden of

"Part of data utilized in these analyses are from the following
Lilly trial: HOL-MC-LFAN.
Data used in preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how _to_
apply/ADNI_Acknowledgement_List.pdf

AD on the healthcare and society, disease-modifying
therapies (DMTs) that will prevent or delay the
onset or slow the progression of AD are urgently
needed. However, since the approval of memantine
in 2003, no new molecular entity for the prevention
or treatment of AD have been approved [3]. This
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failure has occurred despite major advances in the
understanding of the biology of AD and substan-
tial investment by the NIH and the pharmaceutical
industry to develop drugs for well-established and
novel targets [4—6]. Failure may arise from a variety
of factors including inappropriate biological targets,
biological heterogeneity, late intervention, or poor
selection of participants.

In AD trials, active treatment is intended to slow
the rate of cognitive decline. Enrollment of individu-
als who will not show cognitive decline reduces the
chance of detecting therapeutic effects of a drug [7].
The most common method used to select homoge-
nous patients who are more likely to decline during
a trial is by using specific inclusion and exclusion
criteria. Until late 2000s, most trials used simple
enrollment criteria [8] based on demographics (e.g.,
age above 65), clinical history, and baseline cogni-
tive function (e.g., mild or moderate AD) [9, 10].
More recently these criteria became stricter and in
addition to previous criteria, patients need to meet
certain biomarker-based criteria such as amyloid pos-
itivity on positron emission tomography (PET) scans
or have evidence of neurodegeneration (e.g., hip-
pocampal atrophy) to pass the screening step [11,
12]. While these measures can decrease heterogene-
ity of the enrolled patients and increase power of trial
to detect the therapeutic effect, they are also asso-
ciated with some tradeoff in increased trial costs,
burden, and consequences. Furthermore, even with
implementation of strict inclusion or exclusion cri-
teria, a substantial number of patients fail to show
any signs of cognitive decline during the follow-up
[7].

One strategy to overcome this problem, and simul-
taneously boosting the power of trials, is to only
enroll individuals likely to progress based on data-
driven predictive models. Quantitative risk prediction
for AD using structured data sources and classi-
cal statistical methods have been available for many
years. However, predictive models have not been used
in design of AD clinical trials. Machine learning
(ML) techniques, which are specifically designed for
the purpose of prediction, can provide incremental
improvement in predictive performance using com-
plex and high-dimensional data [13, 14]. Considering
the high performance of such models, they have huge
potential for practical use in “real-world” research
and clinical practice. Showing effectiveness of pre-
dictive models in data from clinical trials is one of the
most first steps toward implementing such methods
in practice.

In this study, we aimed to investigate if ML mod-
els can be used to identify individuals who will show
cognitive decline during the timeframe of a clini-
cal trial. For this purpose, we used baseline data
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI), a longitudinal cohort of aging and
dementia, to train ML models that can predict rate
of cognitive decline in individuals with AD. Sub-
sequently, the trained ML models were applied to
baseline data from the placebo arm of Semagacestat
trial, a phase III randomized clinical trial, to pre-
dict which of the individuals are more likely to have
cognitive decline during follow-up. While these two
datasets have substantial differences, they are both
multicenter studies, have longitudinal data on patients
with diagnosis of AD at enrollment, have collected
imaging data, and have similar processes features
(e.g., volumetric MRIs). Furthermore, showing high
performance of a model developed using data from a
cohort in predicting cognitive trajectory in a clinical
trial’s data, would be a testament for effectiveness of
such models.

METHODS

Study design and participants

Two data-sets were used for this study: I) Data
used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging
(MRI), PET, other biological markers, and clinical
and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive
impairment and early AD. The data used for our
analysis were downloaded from the ADNI database
in March 2019 after obtaining permission from the
investigative team. The individuals included in the
current study were initially recruited as part of
ADNI-1, ADNI-GO, and ADNI-2 between 2005
and 2013. ADNI study was approved by the Insti-
tutional Review Boards (IRB) of all participating
institutions. Informed written consent was obtained
from all participants at each site. Details of the
ADNI cohort and study methods are describes fully
at (http://www.adni.loni.usc.edu); II) Semagacestat
trial (H6L-MC-LFAN study), which is a clinical trial
conducted by Eli-Lilly between December 2009 and
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April 2011 to evaluate the efficacy of Semagacestat,
a small-molecule -y-secretase inhibitor, for treatment
of AD trial. The trial was terminated before comple-
tion on the basis of a recommendation by the data
and safety monitoring board and the results showed
that as compared with placebo, semagacestat did not
improve cognitive status, and patients receiving the
higher dose had significant worsening of functional
ability [15]. The research protocol was approved
by the institutional review board at each institution
where the trial was conducted, and all participants
provided written informed consent. Other details of
LFAN study, including recruitment and methods are
explained previously [15].

ADNI sample included participants with mild AD
and LFAN participants included participants with
mild-to-moderate AD. For both studies, participants
had to satisfy the criteria of the National Institute
of Neurological and Communicative Disorders and
Stroke—Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria for proba-
ble AD [9], clinical dementia rating (CDR) of 0.5 or
1[16], and Mini—Mental State Examination (MMSE)
scores of 20-26 (for ADNI) or 16 to 26 (for LFAN),
with higher scores indicating better cognitive func-
tion [17].

Inclusion criteria

Eligible participants for current study were all of
the ADNI and LFAN participants who had a diagno-
sis of mild-to-moderate AD at baseline, had baseline
MRYI, and at least 1 year of longitudinal follow-up. A
total of 202 participants from the ADNI study and 77
participants from the LFAN study met the criteria for
inclusion in our study.

Neuropsychological data and APOE gene status

The following neuropsychological (NP) tests were
available for both studies and used in our models:

Mini-Mental State Examination (MMSE) [17]: A
brief screening instrument for cognitive dysfunction
with raw scores that range from O to 30, where lower
scores indicate greater cognitive dysfunction.

Alzheimer’s Disease Assessment Scale cognitive
subscale (ADAS-cog) [18]: The ADAS-Cog was
developed as an outcome measure for dementia inter-
ventions; its primary purpose was to be an index of
global cognition in response to antidementia thera-
pies. ADAS-cog raw scores range from O to 70, where
higher scores indicate greater cognitive dysfunction.

Apolipoprotein E (APOE) €4 allele frequency was
available for all participants included in this study.
ApoE4 status was defined as ApoE4 negative (-) if
they carried no ApoE4 allele or ApoE4 positive (+)
if they carried at least one ApoE4 allele.

For more information on these measures and meth-
ods of assessment, please visit ADNI website at
http://www.adni.loni.usc.edu.

MRI measures

MRIs were collected using a unified protocol for
each study and preprocessing for measurement of
MRI volumetrics were completed using methods pre-
viously describes in detail (For more information for
ADNI protocols, see http://www.adni.loni.usc.edu
and for LFAN, see Doody et al. [15]). MRI vol-
umetrics available for participants of both studies
included left hippocampal volume, right hippocam-
pal volume, ventricular volume (sum of lateral and
third ventricles), and total brain volume. Considering
that MRI analysis methods were different between
studies (ADNI and LFAN) and to harmonize data-
sets, standardized scores (Z-score = (X-w)/o; where
X =score, . =mean, and o = standard deviation) for
volumetric measures were computed separately for
each sample and used for further analysis in this
study. The MRI measures had a normal distribution in
our sample and therefore converting measures using
the standard score was deemed appropriate for our

purpose.
Data analysis

Selection of feature-set

A total of 11 features (measures) were selected for
inclusion in the ML models:

e Demographics: age, sex, and education.

e Genomics: ApoE4 status

e Cognitive scores: MMSE, ADAS-cog

e Clinical information: Geriatric depression
scale (GDS) [19]

e MRI volumetrics: left hippocampal volume,
right Hippocampal volume, Ventricular volume (sum
of lateral and third ventricles), and total brain volume.

Selection of features was based on availability of
feature in both ADNI and LFAN data-sets. Con-
sidering relatively small size of this feature-set, we
did not use any feature selection algorithm and all
the available features were included in the models.
Considering that features used in current study had
considerably different ranges, in addition to MRI
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measures, all other continuous measures (age, edu-
cation, MMSE, ADAS-cog, GDS) were normalized
separately for each dataset, and Z-values were used
in the models. Data normalization is considered to be
essential for improving performance of ML models
[20].

Predictive models

We used two ML models of decision trees (DTs)
[11] and K-nearest neighbor (kNN) [21], which are
proven to work well with small datasets and small
feature-sets, for classification:

e DTs are powerful classifiers that sequentially
dichotomize the feature space into regions associated
with different classes. As such, they are capable of
learning arbitrarily complex Boolean functions that
map the features/predictors to class labels [11]. While
they are widely used due to their ease of training based
on labeled data, and robustness to missing features,
they are known to be unstable due to their hierarchical
structure: an incorrect decision at a high node in the
tree would propagate down the nodes and results in
misclassification (for details, see [12]). We used a fine
DT (f-DT) model in the current study.

e kNNs are among the simplest, yet effective
machine learning methods that use the idea of polling
among the labels of the training examples closest to
a new sample, and assigning the majority vote as its
predicted label. To this end, for a positive integer K,
the Euclidean distance between the new sample and
the elements of the training set are computer and K
training examples with the smallest distance are cho-
sen to poll from (for details, see [21]). In brief, the
Euclidean distance is specified by the following for-
mula, where p is the new sample to be labeled and
q is any of the examples in the training set, each
having n features. The term p; refers to the value
of the i feature of example p, while q; refers to
the value of the it feature of example q, for i=1,2,

., I

dist (p. q) = \/(p1— > +(p2—2)? + (P —gu)?

The value of K in KNN was determined by using
different K values in the models, starting from one to
the square root of the size of the training set (approxi-
mately 3 in our analysis). The K-value of 1 showed the
best classification performance in the training dataset,
therefore results presented in this study are based on
that.

Five-fold cross-validation was used for testing
validity of all ML models. Analysis and computation

of machine learning models were conducted using
MATLAB ©O(version 2018b).

Finally, for the purpose of a head-to-head compar-
ison between conventional statistical methods (also
known as an old machine learning approach) and
newer ML models, a classical logistic regression
model was applied to the same feature-set to classify
participants.

Analytical approach

Study design and general analytical approach is
summarized in Fig. 1. We used baseline data from
the ADNI participants to train ML models. Based on
the longitudinal data at 12-month follow-up, ADNI
participants were divided into two groups: 1) Stable
cognition (SC), who had either no change in cog-
nitive function or showed improvement in cognitive
function based on ADAS-cog scores (i.e., ADAS-
€0g12month — ADAS-COghaseline >0); and 2) Declining
cognition (DC), who showed some decline in cog-
nitive function at 12 months follow up based on
ADAS-cog scores (i.e., ADAS-cog1omonth — ADAS-
€0ghaseline <0). The model with better classification
performance was applied to the baseline data from
LFAN study to predict cognitive trajectory (remain-
ing stable or declining).

The results from ML models were compared with
actual longitudinal data at 12 months and 23 months
of follow-up. The overall performance of each model
was calculated based on the percentage of correct
classification (accuracy), sensitivity, specificity, pos-
itive predictive value (PPV), and negative predictive
value (NPV).

McNemar test was to select the most accurate ML
model, which was trained using ADNI data. Based
on the results of this test the best model was selected
for prediction of outcomes in the validation sample
(LFAN).

RESULTS

Demographics and baseline characteristics

Table 1 summarizes ADNI study participants’
demographics and clinical characteristics. ADNI par-
ticipants had an average age of 74.7 years (SD=7.7)
and were 44.6% men. At 12 months follow up, 51
(25.2%) of ADNI participants had no decline in cog-
nitive function, while 151 (74.8) participants showed
cognitive decline.

Table 2 summarizes LFAN study participants’
demographics and clinical characteristics. LFAN
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Fig. 1. Study design diagram and schematic illustration of training models and prediction of cognitive decline. Data from ADNI were used for
training the models. Participants were dichotomized to two groups based on the longitudinal change in ADAS-cog score at 12 months: stable
cognition (SC) and declining cognition (DC). Models were trained to classify participants of training data-set (Yellow block). Subsequently,
participants from LFAN study were introduced to the newly developed model to predict if they will have decline in cognition or will remain

cognitively stable in longitudinal follow-up (Orange block).

Table 1
Baseline characteristics of ADNI study
ADNI sample Total Remained cognitively Cognitively
Sample stable or improved at declined at 12
12 months follow-up' months follow-up'

Sample size, N (%) 202 51(25.2) 151 (74.8)
Sex, Men, % 44.6 39.2 46.4
APOEA carrier, % 70.3 60.8 73.5
Age? 74.7 (7.7) 74.6 (7.6) 74.8 (7.8)
MMSE at Baseline 23.2 (2.0 23.7(1.7) 23.1(2.0)
ADAS-cog at baseline 19.2 (6.7) 18.9 (6.9) 19.3 (6.6)
ADAS-cog at 12m follow-up 23.7(9.3) 16.7 (6.6)* 26.1(8.9)
GDS 1.6 (14) 1.6 (1.1) 1.6 (1.5)
Total brain volume, cm? 972 (120) 991 (135) 966 (115)

Based on change in ADAS-cog score. 2Numbers represent mean (standard deviation) unless otherwise
stated. *indicates significant differences between subgroups (p <0.05), using #-test for continuous vari-
ables, and Chi-square test for categorical variables. MMSE, Mini—-Mental State Examination; ADAS-cog,
Alzheimer’s Disease Assessment Scale cognitive subscale; GDS, Geriatric Depression Scale.

participants had an average age of 74.2 years
(SD=8.1), and were 45.5% male. At 12 months fol-
low up, 28 (36.4%) of LFAN participants had no
decline in cognitive function, while 49 (63.6%) par-
ticipants showed cognitive decline. A total of 41 were
followed for 23 months in this study, of whom 15
(36.6%) remained cognitively stable and 26 (63.4%)
cognitively declined.

Performance of predictive models in
classification of SC versus DC in ADNI

Data from ADNI was used to train the predic-
tive models to classify participants to SC versus DC
subgroups. Logistic Regression model failed to clas-
sify participants (classified all participants as DC),
and therefore was dropped from subsequent analysis.
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Table 2
Baseline characteristics of LFAN study
LFAN study Total Remained Cognitively Remained Cognitively
Sample cognitively stable declined at 12 cognitively stable declined at
or improved at 12 months follow- or improved at 23 23 months
months follow-up! up' months follow-up' follow-up!
Sample size, N (%) 77 (100) 28 (36.4) 49 (63.6) 15 (36.6)° 26 (63.4)°
Sex, Men, % 455 57.1 38.8 40.0 46.2
APOEA carrier, % 56.5 435 63.0 61.5 56.5
Age? 74.2 (8.1) 75.0 (8.1) 73.7(1.9) 73.8 (8.1) 74.4 (8.5)
MMSE at Baseline 22.2(3.5) 23.4(3.2)* 21.6 (3.5) 23.9 (3.7) 22.0(3.4)
ADAS-cog at baseline 18.7 (7.8) 16.4(7.7)* 20.0 (7.6) 16.8 (7.2) 20.4 (8.5)
ADAS-cog at 12m follow-up 21.9 (11.9) 14.0 (7.5)* 26.5 (11.6) 16.9 (7.3)* 25.5(13.5)
ADAS-cog at 23m follow-up 23.8 (14.5) 17.3 (12.1)* 27.5 (14.5) 14.0 (7.7)* 29.3 (14.5)
GDS 1.6 (1.6) 1.3(1.0) 1.9 (1.8) 1.5(1.5) 2.0(1.7)
Total brain volume, cm? 1032 (104) 1044 (108) 1020 (98) 1028 (95) 1003 (74)

IBased on change in ADAS-cog score. 2Numbers represent mean (standard deviation) unless otherwise stated. 3Data at 23m was available
only for a total of 41 participants. *indicates significant differences between subgroups (p <0.05), using t-test for continuous variables,
and Chi-square test for categorical variables. MMSE, Mini-Mental State Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale
cognitive subscale; GDS, Geriatric Depression Scale.

Table 3
Performance of machine learning models in classifying participants with stable cognition (SC)

from participants with declining cognition (DC) in ADNI sample

Model Sensitivity, Specificity, PPV, % NPV, % Accuracy, %

% (CI) % (CI) CI) (CI) (CI)

Decision trees (DT) 79.5 21.5 75.0 26.2 64.9
(72.1-85.6) (11.3-35.3) (71.8-78.0) (16.1-39.5) (57.8-71.4)

k- Nearest 80.1 33.3 78.0 36.2 68.3
Neighborhood (kNN) (72.8-86.1) (20.8-47.9) (74.3-81.4) (25.2-48.3) (61.4-74.7)

PPV, positive predictive value; NPV, negative predictive value.

Table 4
Performance of k-Nearest Neighborhood (kNN) models in prediction of cognitive change (stable
versus decliner) in the LFAN sample

Follow up Sensitivity Specificity PPV (%) NPV (%) Accuracy

duration (%) (%) (%)

12 months 65.5 47.0 80.8 28.6 61.3
(51.8-71.7) (23.0-72.2) (72.2-817.3) (17.8-42.5) (49.4-72.3)

23 months 67.6 57.1 88.5 26.7 65.8
(49.5-82.6) (18.41-90.1) (75.9-94.9) (14.0-44.8) (49.4-79.9)

PPV, positive predictive value; NPV, negative predictive value.

kNN model had an overall accuracy of 68.3%, while
accuracy of DT model was 64.9%. Sensitivity, speci-
ficity, PPV and NPV of ML models are summarized
in Table 3.

KNN model outperformed DT model in all mea-
sures of performance (sensitivity, specificity, PPV,
and NPV). In addition, McNemar test confirmed that
kNN model have a better performance in compari-
son with DTs (p <0.001). Therefore, the trained KNN
model was selected for predicting outcomes in LFAN
study.

Performance of predictive models in LFAN

Trained models were applied to LFAN data, to pre-
dict if each participant is more like the SC group (i.e.,
their cognition is predicted to remain stable) or more
like the DC group (i.e., their cognition is predicted
to decline). Results of this prediction by ML model
was compared with actual data from 12 months and
23 months of longitudinal follow-up (Table 3). The
model showed an overall accuracy of 61.3%, sensitiv-
ity of 65.5%, and specificity of 47.0% in identifying
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decliners at the 12 months of follow-up. Models per-
formance at 23 months of follow-up improved, with
overall accuracy of 65.8%, sensitivity of 67.6%, and
specificity of 65.8% in identifying decliners.

DISCUSSION

In this study we showed that using baseline infor-
mation from a cohort of aging and AD (ADNI), ML
predictive models can effectively identify individuals
who are more likely to show cognitive decline over
the follow up time in an independent sample from a
phase III clinical trial of AD (LFAN). We showed that
positive predictive value of the model is 80.8% at 12
months and 88.5% at 23 months, which is 17.2% and
25.1% higher than the observed base-rate of cognitive
decline in the same sample (63.6%).

Many studies have previously shown that dif-
ferent measures such as neuropsychological tests,
genomic risk scores, MRI or PET measures, or other
cerebrospinal fluid (CSF) and blood-based biomark-
ers can predict cognitive trajectories in older adults
in different stages of AD [8, 14, 22-25]. Most of
these studies use longitudinal data from prospective
cohorts of aging and dementia, which have the advan-
tage information collected over extended follow-up
periods. However, due to the costs, burden, and reg-
ulations, the first assessment of treatment efficacy in
clinical trials is scheduled 3 to 24 months after ini-
tiation of the trial and it is expected to conclude the
trial within a timeframe of 18 months to 5 years. Our
results indicated that predictive models can provide
approximately 17% and 25% improvement in predic-
tion of cognitive decline at 12 months and 24 months
follow-up, respectively. This could boost the power of
trial by inclusion of individuals who are more likely
to decline.

The idea of targeting a subgroup for analysis of
treatment effects is not new [26]. In fact, recently
many drug trials for prodromal AD or mild-AD have
been recruiting subjects, with an inclusion criterion
based on amyloid PET positivity [27] or CSF amyloid
and tau [28]. We extend this approach to the selection
of participants based on a machine learning classi-
fier that combines numerous clinical measures and
biomarkers. The goal is to enroll only patients likely
to decline and exclude patients likely to have stable
cognition. ML models do not solely rely on the abso-
lute value of the features and account for pattern on
the relationship between the features. Therefore, ML
models provide a better alternative to conventional

statistical methods (i.e., using cut offs or index scores)
for predicting clinical outcomes [29]. A major chal-
lenge to this approach is that the statistical power must
be traded off against the logistical complexity and
cost of collecting and analyzing multiple biomarker
assessments). This study showed that even by using
a small feature-set consisted of demographics infor-
mation, ApoE4, and a few neuropsychological and
MRI measures, ML learning models are strong tools
for prediction of clinical disease progression.

A limitation of our study is the small sample size.
This is in part due to using data from an older clin-
ical trial, in which only a small subsample of study
had MRI measures. Due to the small size of LFAN
study, we were not able to use the same sample for
both training and validation of models and therefore
we had to rely on the ADNI sample for training
the ML models. That poses another limitation to
this work: ADNI and LFAN studies are substantially
different in design, recruitment, participant charac-
teristics, and preprocessing of data. Furthermore, the
features available in LFAN study to include in ML
models were relatively small, which limited our abil-
ity to use feature engineering or more complex ML
models. Training models using data from participants
with longer follow-up periods (e.g., 24 months) might
lead to improved performance of models. However,
restricting inclusion criteria to those who had at least
24 months of follow-up (or longer) would substan-
tially decrease the number of eligible participants
for this study, which negatively impacts performance
of models. Another limitation of this study is using
the change in a single cognitive test (ADAS-cog) to
classify participants into cognitively stable or declin-
ing groups. However, it is well known that most
cognitive tests, including ADAS-cog, are prone to
measurement errors and might not provide an accu-
rate assessment for cognitive status [30], which in
turn might lead to inaccurate classification scores
at two different time-points as the LFAN study was
designed and conducted approximately 10 years ago
with specific primary and secondary outcomes, which
were appropriate for that time. Therefore, many AD-
related clinical and cognitive measures (i.e., cognitive
domains other than memory) or biomarkers (amy-
loid and tau imaging, or CSF biomarkers) were not
collected at all or only collected for a very small pro-
portion of sample, making it implausible to assess
the effect of these important measures in our mod-
els. Logistic regressions failed in classification of
participants in our study, which might be due to
small sample size, noisy data, or small differences
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at decision boundary (small sample). This shows the
importance of features availability and sample size
on performance of predictive models. Of note, in this
study we trained our models to classify those who
had stable cognition versus those who had any cog-
nitive decline, which is a conservative approach. It
is expected that models achieve even higher perfor-
mance if the goal was to identify individuals with
more rapid cognitive decline.

Despite all limitations, it is encouraging that this
study indicates that ML models trained in cohorts like
ADNI (and potentially in populations-based stud-
ies) can be used to boost the power of clinical
trials. Future studies should be conducted to vali-
date our findings in more recent clinical trials with
larger sample size and longer duration of follow-
up, which also have additional modalities of data
such as amyloid and tau imaging, and blood and
CSF biomarkers for prediction of clinical disease
progression. Another future direction would be to
employ advanced feature selection methods [31] and
more complex machine learning algorithms (e.g.,
Ensemble methods or superLearner) to improve clas-
sification and prediction performance.
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